News ID: 187730
Published: 0634 GMT February 15, 2017

Stanford scientists measure African crop yields from space

Stanford scientists measure African crop yields from space

Researchers at Stanford University have developed a new method for accurately measuring crop yields using satellite images.

Scientists hope their new strategy will help researchers track agricultural productivity in developing countries where farming data is limited, UPI reported.

Marshall Burke, an assistant professor of earth and environmental sciences at Stanford, said, "Improving agricultural productivity is going to be one of the main ways to reduce hunger and improve livelihoods in poor parts of the world.

"But to improve agricultural productivity, we first have to measure it, and unfortunately this isn't done on most farms around the world."

Until recently, the resolution of satellite images wasn't sufficient for the kind of analysis proposed by Burke and his colleagues. Now, satellites the size of a toaster can take and send high-resolution photographs of Earth's surface.

David Lobell, an associate professor of earth sciences, said, "You can get lots of them up there, all capturing very small parts of the land surface at very high resolution.

"Any one satellite doesn't give you very much information, but the constellation of them actually means that you're covering most of the world at very high resolution and at very low cost. That's something we never really had even a few years ago."

Researchers tested their crop yield prediction strategy in Western Kenya where small farms are plentiful.

They combined on-the-ground field work, meeting and interviewing local farmers, with a model designed to interpret satellite images.

The model uses local weather conditions and an understanding of how crops develop to predict yields based on satellite images.

Scientists used their field work to verify the accuracy of their new model, described in the journal PNAS.

Burke concluded, "Just combining the imagery with computer-based crop models allows us to make surprisingly accurate predictions, just based on the imagery alone, of actual productivity on the field.”

Turkey and Lobell are now working on scaling up their predictive model to measure yields in other parts of Africa.

 

   
KeyWords
 
Comments
Comment
Name:
Email:
Comment:
Security Key:
Captcha refresh
Page Generated in 1/1755 sec