News ID: 237228
Published: 0854 GMT January 12, 2019

Tech revolution will help farmers harvest sunshine with their crops

Tech revolution will help farmers harvest sunshine with their crops

By Emma Bryce*

In the heart of the Sonoran Desert in Arizona, the US, lush rows of tomatoes, peppers, carrots, chard and peas are growing in the arid extremes, protected by an array of solar panels which shade the crops and keep moisture in the soil.

This is one of a number of test grounds for the principle of agrivoltaics, a way of fusing food with clean-energy production that will change the way we farm in 2019, reported.

This relatively simple technology offers a solution to two major challenges of our times: Ramping up food production so we can feed 9.8 billion people by 2050, and making the switch from fossil fuels to green energy — two goals that will both require swathes of increasingly limited land. Growing crops beneath photovoltaic panels also saves water and enables food production in dry, hot regions.

In 2019, with solar-panel prices predicted to dip by up to 15 percent, according to Bloomberg New Energy Finance, agrivoltaics will become an agricultural norm.

The integration of solar panels and plants is not only good for crops: It could increase renewable energy production. When solar panels reach temperatures of 25°C or more, their efficiency dips. But an unexpected discovery of the Sonoran Desert projects has been that crops transpiring beneath the panels create what the project’s leader Greg Barron-Gafford, a biogeographer at the University of Arizona, calls an ‘evaporative cooling effect’, which chills the underside of the solar array and improves its efficiency.

Elsewhere, projects are highlighting the land-saving potential of agrivoltaics. A 2.4-hectare project in Germany called APV-RESOLA has found that combining solar panels with cropland “results in a rise in land-use efficiency of more than 60 percent” (a measure of the total productivity of a unit of land) while maintaining 80 percent of crop yield.

But these are just two of the several hundred agrivoltaic plants that now pepper farmland in the US, Germany, France, China and Japan. In Japan alone, more than 1,000 agrivoltaic plants have been installed in recent years, driven by declining land space in the country.

“Just eight years back there was almost nothing globally,” said Max Trommsdorff from the Fraunhofer Institute for Solar Systems, who is project lead on APV-Resola.

“Today we have approximately two gigawatts [from agrivoltaics]”— enough to power almost 1.5 million homes.

Next year, that figure will expand as governments catch on to the benefits of agrivoltaics. The French government said it will double the number of tenders available for agrivoltaic projects in 2019, as part of a larger renewable-energy support scheme.

And a US Department of Energy-funded project called ‘InSPIRE’ is building a network from existing agrivoltaic plants, gathering data from these sites including energy output, which crops flourish beneath the panels and how much water is conserved. With 18 projects currently in the database, the project will be expanding to include projects in Puerto Rico, Indonesia and elsewhere.

“We are drastically expanding the number of research sites in 2019,” said Jordan Macknick from the US National Renewable Energy Laboratory, which is involved with the project.

“We’re really hoping this could serve as the common source of data for people all over the world. I think this configuration, linking solar and agriculture, is poised to explode.”

Barron-Gafford, whose project is part of ‘InSPIRE’, thinks there’s another reason why agrivoltaics will take off in 2019: The weather extremes of 2018, which gave many countries their warmest year on record.

“If you can do something that saves water, it’s going to catch someone’s attention. If you can add a consistent income source like renewable energy, then farmers are going to like it,” he said.

“The fact that we’re in such a stressful climate right now makes the idea of innovative solutions really captivating.”


* Emma Bryce is a London-based science and environmental journalist.




Security Key:
Captcha refresh
Page Generated in 3/7385 sec